(x^2+12)=(43-2x)

Simple and best practice solution for (x^2+12)=(43-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+12)=(43-2x) equation:



(x^2+12)=(43-2x)
We move all terms to the left:
(x^2+12)-((43-2x))=0
We add all the numbers together, and all the variables
(x^2+12)-((-2x+43))=0
We get rid of parentheses
x^2-((-2x+43))+12=0
We calculate terms in parentheses: -((-2x+43)), so:
(-2x+43)
We get rid of parentheses
-2x+43
Back to the equation:
-(-2x+43)
We get rid of parentheses
x^2+2x-43+12=0
We add all the numbers together, and all the variables
x^2+2x-31=0
a = 1; b = 2; c = -31;
Δ = b2-4ac
Δ = 22-4·1·(-31)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8\sqrt{2}}{2*1}=\frac{-2-8\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8\sqrt{2}}{2*1}=\frac{-2+8\sqrt{2}}{2} $

See similar equations:

| z+4-4z=-11 | | -2+2h=3h+3+9 | | 8x+10-5x=19 | | -4(3/4x+6)=-26 | | 9y-y+-7y+18y=-19 | | 3x(2x+4)=9 | | 18=-11x-59 | | -15=3(w+3) | | 110+45x=180+25x | | 7x=3(8-x) | | 5(3x+12)=135. | | 2(6y)-5y=14 | | 1.2x-0.8=-2.0x | | 5x+24/8=x/4 | | -3=6m+7+8 | | 2(y+1)=7 | | 4v+37=3 | | 1.8m=-3(0.7m-13.39) | | n/20=25 | | 1/2(4x-18)=31 | | 3(x-4)+5x=6x-8 | | x6+3=2/3 | | 2(4x-3-1)=166-46 | | (4x+43)+(9x-26)+(2x-12)=180 | | 2w=–9+w | | x6+3=23 | | 5.7x+3.4=2-2x | | 20b+18-8b=-9(-3b+18) | | 28.50+2b=62.50 | | 27y-9y+24=14y+48 | | 20b+18-8b=-9(-3+18) | | 62.50+2b=28.50 |

Equations solver categories